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We report experimental results concerning observation of a pattern forming system, subject to directional
viscous fingering �printer’s instability�. This system was excited by a time-dependent, periodic perturbation. A
variety of spatiotemporal effects was observed, including pattern transient dynamics, wave vector selection,
and morphological transitions. Detailed measurement of pattern shape and its associated Fourier modes assured
the detection of a crossover between different regimes of the pattern evolution.
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I. INTRODUCTION

An important case of pattern formation in nonequilibrium
thermodynamic systems refers to one-dimensional cellular
patterns. Although this kind of structure presents an inherent
simplicity, it exhibits a large variety of dynamical regimes as
shown by Coullet and Iooss �1�, who used symmetry argu-
ments to report the existence of ten generic instabilities in
one-dimensional periodic patterns. These structures are ob-
served, for example, in a fluid-fluid interface subject to di-
rectional viscous fingering �DVF�. Several configurations of
actual systems fit this class of hydrodynamic model, being
printing machines, in which a liquid is forced to flow into the
gap between a rotating cylinder and a plate, a case in point.
Instabilities in the liquid-air interface in this system were
originally described by Pitts and Greiller �2� and by Taylor
�3�. Pattern formation in a different configuration consisting
of two eccentrical rotating cylinders was also reported by
Rabaud et al. �4–6�, who investigated some processes that
may affect symmetry properties of the observed spatial pat-
terns. Studies concerning the linear stability analysis of the
DVF instability were performed by Hakim et al. �7�. Second-
ary instabilities were reported by Pan and Bruyn �8,9�,
Michalland et al. �10�, and phase space domains were re-
ported by Cummins et al. �11�. Michalland and Rabaud �12�
also described the features of transition to chaos in DVF, and
Fourtune et al. �13� demonstrated the existence of phase dif-
fusion effects for this system. Time response of a system
using the same configuration as in Ref. �7� was reported by
Santos and Figueiredo �14�, who excited the hydrodynamic
fields of this system by an externally imposed periodic per-
turbation, whose effect on the interface position was ob-
served, at both prebifurcation and postbifurcation regimes.

In this work we report studies on the dynamical properties
of pattern formation in a DVF system, generated under the
same experimental conditions used in Ref. �14�. We show
that the imposed perturbation may affect the evolution of
pattern modes and may persist even when there is a satura-
tion of mode amplitudes. Our observations also indicate that
pattern morphology is associated with the wave vector selec-
tion process. This work is organized as follows. In Sec. II we

present the experimental setup, the range of parameters, and
the kind of perturbation used in the experiments, as well as a
brief discussion of precursor modes, already reported in Ref.
�14�. Section III focuses on the mutual influence of pattern
morphology and the precursor modes. In Sec. IV we present
results concerning the evolution of spatial modes in both the
transient and saturation regimes, and effects relating mor-
phology and pattern selection dynamics.

II. EXPERIMENTAL SETUP

For this experiment, a cylindrical stainless steel shaft
�with measured roughness �1 �m�, driven by a precision dc
motor and mounted on aligned bearings, was designed. The
cylinder rotates immersed in a flat reservoir containing sili-
con oil. Parallelism between the cylinder axis and the hori-
zontal base of the reservoir is adjusted by supporting preci-
sion screws so as to ensure that there is a gap between this
cylinder and the base. A sketch of the experimental setup is
shown in Fig. 1. The cylinder is 250 mm long, has an aver-
age radius value �R0� of 31.3 mm, and an eccentricity ��� of
�10 �m. As shown in Table I three different values for the
mean gap distance �b0� between the cylinder and the plate
were adjusted: 300 �m, 400 �m, and 800 �m. This table
also displays the range of angular frequencies ��� of the
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FIG. 1. Sketch of the experimental setup. The cylinder was ad-
justed at three distances to the plate, b0=300 �m, b0=400 �m,
and b0=800 �m.
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cylinder used in the experiments. Values of the critical angu-
lar frequency measured at the bifurcation are shown in the
third column of this table.

Silicon oil �Dow Corning 200� with viscosity ��� equal to
4.80�10−2 kg m−1 s−1 and surface tension �T� equal to
2.08�10−2 N m−1, both specified at 25 °C, was used as the
liquid fluid in our experiments. For better stability of these
parameters, room temperature was constantly monitored
within �0.5 °C. Since the axis-to-base distance is constant,
eccentricity introduces a time dependence on gap values
given by

b�t� = b0 − � sin��t� , �1�

which acts as an external perturbation imposed on the sys-
tem.

A clear meniscus located at the oil-air �open atmosphere�
interface was observed with a 648 �H��484 �V� asynchro-
nous mode digital camera at a frame rate of 17 s−1 and a
spatial resolution of 68 �m /pixel. As shown in Fig. 2 a high
contrast image of the interface was obtained. Interface shape
is depicted mostly as a thin strip, whose profile was obtained
from a computer program we developed using edge detection
techniques. Its output delivers, for a given horizontal posi-
tion y �see Fig. 2�, the coordinate f�y� of maximum contrast.
In order to follow the dynamics of the interface we have
obtained, for each value of the mean distance b0 and each
adjusted angular frequency, a sequence of images. At the
critical frequency �c the straight morphology becomes un-
stable and a bifurcation happens. The system shifts to a new
morphological state presenting a periodic pattern as shown in
the Fig. 2�b�.

Interface data were treated using a numerical Fourier
analysis. We did not make use of fast Fourier transform
�FFT� algorithms in treating the spatial modes. We wrote our
own Fourier transform routine �a discrete Fourier transform
�DFT� algorithm �15�� in such a way that the diffraction of

the observation window was taken into account. This way, to
be consistent with uncertainty induced by this window, wave
vector resolution was calculated with much more precision
��k=0.025 mm−1� than that defined by the normal modes of
the window �used in FFT algorithms�. Afterwards we
checked that Parseval’s theorem was satisfied. As a final pro-
cedure, our routine was applied to standard monomode and
multimode patterns, artificially generated with different am-
plitudes, and we checked again that its output was calibrated.

The range of angular frequencies of the rotating cylinder
was chosen in order to get information concerning interface
dynamics at both prebifurcation and postbifurcation regimes.
For a better comparison of the different experiments we have
defined a reduced control parameter for this system as

� �
� − �c

�c
. �2�

As the cylinder begins to turn, pressure and velocity fields
are established in this system. Due to competitive forces be-
tween these fields and also to wetting and surface tension
effects, the interface experiences a recoil. A steady hydrody-
namic model was developed by Hakim et al. �7� that predicts
the interface position x �see Fig. 1� in the straight morphol-
ogy �the prebifurcation branch� as a function of the control
parameter. As made in the previous work �Ref. �14��, we fit
our recoil data to Eq. �10� of Ref. �7� in order to get param-
eters of the capillarity function F�Ca�. In the present work,
these values will be used when we compare our data of pat-
tern growth rates to linear stability analysis predictions.

The existent eccentricity introduces a time-dependent
variation on gap values as described by Eq. �1�. Thus it is
expected that recoil values should be influenced by this per-
turbation. In fact, we have observed �14� an oscillatory mo-
tion of the mean value of the interface profile f�y�. Ampli-
tude values measured for the fundamental Fourier mode of
these oscillations as a function of the control parameter are
shown in Fig. 3. It confirmed the existence of this phenom-
enon in all the experiments performed, although it was less
pronounced when the distance b0 became larger. It is clear
from these data that mode amplification is observed as the
control parameter approaches zero �the bifurcation point�.
After this point, the amplitude of the oscillations, still mea-
sured as the mean interface profile, decreases to the low val-
ues observed at low velocities �larger negative control pa-
rameter�. These results �Ref. �14�� showed that those
amplified modes follow a power law in the prebifurcation
branch and an exponential decreasing in the postbifurcation
branch determining the existence of a cuspid at the bifurca-
tion point. As discussed in Ref. �14�, so far there is no simple
explanation for these effects. It is evident, however, that they
reveal the existence of a new phenomenon in this pattern-
forming system, one that is not present in the unperturbed
case. This kind of instability is known as a precursor. Its
importance has been verified in other contexts as earthquakes
�16,17� and epileptic seizures �18,19�. In fact, theoretical re-
sults found by Wiesenfeld �20�, show the existence of bifur-
cations signaled by precursors. In the following sections we

TABLE I. Values of the parameters used in the experimental
setup. Values of the critical velocity ��c� for each set of experi-
ments are also shown.

Distance b0 ��m� Range of � �rad s−1� �c �rad s−1�

300 1.30–5.38 2.53

400 1.10–8.71 4.87

800 2.61–16.67 11.58

FIG. 2. Images of the straight �a� and periodic �b� morphologies
of the interface. In both images the open atmosphere is located
above the interface and silicon oil is located below the interface.
Experiments set for b0=400 �m and �=4.85 rad /s �a� and �
=5.39 rad /s �b�.
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report our observations concerning the effects of the per-
turbed interface on the emergence of pattern formation.

III. MORPHOLOGICAL EFFECTS IN THE
POSTBIFURCATION BRANCH

At the bifurcation point, the highly symmetrical morphol-
ogy of the straight interface spontaneously breaks into a pe-
riodic pattern. In our experiment, we were able to observe
how the pattern evolved along all the stages of both transient
and saturation regimes. In order to study this phenomenon,
spatial modes of the interface profile were obtained from a
numerical Fourier transform of those data, allowing spectra
to be followed in time. Observation of these modes revealed
that their amplitude oscillated with the same angular fre-
quency as the cylinder. Time dependence of this amplitude
and the mean interface position for a typical experiment is
depicted in Fig. 4, which clearly shows that eccentricity af-
fects the pattern formed. Close to the bifurcation, at low
positive values of �, we observed oscillations with larger
amplitude in pattern valley �small x in the Fig. 1� than in its
crest. For larger values of �, these oscillations became more
pronounced in crests than in valleys. It appears that this ef-
fect might be responsible for the observed suppression of the
mean interface position oscillations displayed in the right
side of Fig. 3.

In order to test this possibility, we made an inspection in
the shape of the pattern as the control parameter varied. In
fact, pattern morphology �see Fig. 5� has different aspects for
each value of the control parameter. To do this, we first cal-
culated the mean interface profile. This defines unambigu-
ously valley and crest regions of the pattern. Then we got
valley and crest widths measured at pattern half height. From
these measurements, the pattern aspect ratio, defined as

	 =
W+ − W−

W+ + W−
, �3�

was calculated. Here W+ is the average crest width and W− is
the average valley width. These results are shown in Fig. 6,
which displays the plotted values of 	 against the control
parameter for all the distances b0 used. In the same frame,
peak values of the mean interface position oscillations are
also shown. In the two most critical cases �b0=300 �m and
b0=400 �m�, a change in the sign of 	 was observed. In
both cases, 	 is positive for low �positive� values of the
control parameter, meaning that crest width is larger than
valley width. For large enough values of the control param-
eter, close to �0.10–0.20, 	 becomes negative. For the larg-
est distance b0, 	 is always negative regardless of the cylin-
der velocity. It was observed that the change in the character
of pattern morphology �the sign of 	� roughly coincides with
the strong suppression of the oscillatory modes induced by
the imposed time-dependent perturbation, thus confirming
the existence of joint influence of these different phenomena.

FIG. 3. Amplitude of the fundamental Fourier mode ���� for
b0=300 �m, ��� for b0=400 �m, and ��� for b0=800 �m� ad-
justed to a power law in the prebifurcation branch and to an expo-
nential in the postbifurcation branch �Ref. �14��.

FIG. 4. Time response of this system subject to a deterministic
perturbation. This picture shows time oscillations of pattern ampli-
tude �upper� and mean interface position �lower� for an experiment
adjusted for b0=300 �m and �=0.05.

FIG. 5. The asymmetrical morphologies presented by periodic
spatial patterns. In �a� is shown one pattern with a larger crest
compared to its valley and in �b� is shown another pattern having a
valley larger than its crest. Both pictures refer to b0=300 �m and
�=0.05 �a� and �=0.29 �b�.
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These results suggest that mode suppression in the time do-
main could be related to the curvature effects, which neces-
sarily rule morphological changes. Similar results were re-
ported by Rabaud et al. �21� in a Saffman-Taylor instability.
They showed that lateral sidebranches were generated in a
finger as a response of the system due to the application of
an external periodic excitation. Effects of this perturbation
were amplified at low frequency values and suppressed for
larger ones. They argued that amplitude damping at short
wavelengths is caused by surface tension effects. Although
no direct relation between the printer’s instability and the
Saffman-Taylor problem has been developed yet, the results

of Rabaud et al. �21� reinforce our argument that surface
tension could be crucial for the observed suppression of the
oscillations we observed at higher frequencies.

IV. PATTERN SELECTION DYNAMICS

A. Transient regime of pattern growth

Pattern dynamics were observed by following in time the
evolution of the spatial spectra. Time dependence of the
wave vector with the highest amplitude clearly shows that a
transient regime is established soon after the cylinder is

FIG. 6. Values of the aspect ratio ��� ob-
tained by using Eq. �3� and peak amplitude ���
of the mean interface position oscillations �the
right side of Fig. 3� against the control parameter.
Lines are for a guide to the eye only.
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turned on, indicating that there exists a mechanism of pattern
selection in this system, even in the early stage of pattern
evolution. A typical data showing this process for an experi-
ment with b0=300 �m and �=0.21 is displayed in Fig. 7.
Once the selected pattern is known, it is possible to monitor
in time the evolution of its amplitude. As a whole, our data
suggest that the initial evolution of the pattern, in the tran-
sient regime, shows a universal profile, common to all cyl-
inder frequencies and all mean distances b0. Then the ampli-
tude tends to stabilize but may present in this regime a rich
dynamics. In fact, an after-transient richness in the pattern
dynamics of this system has been reported in several works
�4–6,8,9,11�. We show in Fig. 8, data displaying the simplest
evolving pattern, presenting a quasistationary amplitude after
the initial transient regime.

The linear stability analysis �7� for this problem predicts
an exponential growth for the unstable spatial modes. The
evolution that appears later, in the early stages of the nonlin-
ear regime, may be described by a weak nonlinear analysis
�WNL�. No theory has been developed for this problem in
this regime yet. For some pattern-forming problems such as
directional solidification �22,23� and shallow wake flows
�24�, the WNL predicts a Ginzburg-Landau equation �GLE�
for modes with wave vector k, valid for sufficiently small
values of the control parameter

dAk

dt
= 
�k�Ak − ��k��Ak�2Ak, �4�

where 
�k� is the linear growth rate and ��k� is the weak
nonlinear coefficient. This equation admits a closed analyti-
cal solution given by

Ak�t� =
1

	�

 − ��


 − 1
A0

2�e−2
t
, �5�

which describes the transient regime of pattern evolution.
Direct observation of the WNL in the context of pattern for-

mation was made by Figueiredo et al. �25� on the directional
growing of a nematic-isotropic interface of a thermotropic
liquid crystal. They were able to obtain both parameters �

and �� by adjusting their experimental curves to Eq. �5�. The
same procedure was applied in this work, although it is not
clear that Eq. �4� is fully satisfied considering the existence
of eccentricity effects in our system.

We have verified that our data fit very well to the solution
of GLE in the transient regime. However, the obtained values
for the linear growth rate may include some perturbation
effects. For the cases b0=300 �m and b0=400 �m, and at
large velocities, the observed GLE growth rates are greater
than cylinder frequencies. Thus, pattern dynamics is faster
than the characteristic time of the perturbation. This justifies
a good agreement with the transient regime of the GLE. For
the less unstable case, b0=800 �m, we got in almost all
cases, a GLE growth rate smaller than cylinder frequency but
still presenting a satisfactory fit to the GLE transient regime.
This effect is also expected because, as shown in Fig. 3,
eccentricity has a small influence on the postbifurcation
branch for this value of b0. We solved numerically a modi-
fied version of GLE, given by

dAk

dt
= �
�k� + � sin��t��Ak − ��k��Ak�2Ak, �6�

and assumed as a candidate to describe the effects of eccen-
tricity on pattern dynamics. Results of these simulations con-
firm our observations in all distances b0 configured in the
experiments, showing the absence of oscillations when the
pattern is in its growth phase. Thus it appears that the ob-
served transient regime is compatible with the imposed time-
dependent perturbation. Adjusted values for the linear
growth rate 
GL, obtained from fitting our data to the GLE,

FIG. 7. k-mode evolution of spatial pattern. In the time t0 the
wave vector referent to the emerging pattern, for b0=300 �m and
�=0.21, appears. FIG. 8. Spatial mode evolution for the initial history of the

spatial pattern mode with wave vector k=0.500 mm−1 for b0

=300 �m and �=0.21.
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are plotted in Fig. 9. Our attempt to fit these values to the
predicted ones by the linear stability analysis performed by
Hakim et al. failed to obtain realistic parameters for the ex-
periment, even for very low values of the control parameter,
where this analysis is expected to be valid. Nevertheless, a
concave profile for the dispersion relation, predicted by this
linear theory was reached for all distances b0. This may in-
dicate that the perturbation really affected growth rate values
still sustaining the overall transient profile predicted by the
GLE.

In the saturated regime, where a GLE approach predicts a
stationary pattern, we have observed an oscillatory amplitude
�with the same period as the cylinder� superimposed to a
constant saturation value, as displayed in Fig. 10. The same
kind of profile is displayed by the numerical solutions of Eq.
�6�. This reinforces its validity as a candidate to analyze the
transient pattern. However, our attempts to fit its solutions to
the more complex pattern dynamics in the saturated regime
were not satisfactory mainly due to phase mismatching be-
tween the experimental data and the obtained numerical so-
lutions. Therefore this modified GLE gives only a general
qualitative approach to the description of the perturbed pat-
tern in the saturated regime.

As already discussed in Sec. III, oscillations in the mean
interface position persist in the postbifurcation regime due to
asymmetries that occur in the crests and valleys of the
formed pattern. An immediate consequence of this morpho-
logical effect is oscillations in the amplitude of the spatial
Fourier modes. Time-domain Fourier analysis of both types
of oscillations was performed. All these spectra show a
strong peak at the cylinder frequency. Interestingly, these
peak amplitudes are not correlated in a simple way. Table II
displays values of Pearson’s correlation coefficient between
those two sets of data for each b0. It also contains, for each
b0, the ratio 
Ak� / 
�x� of their mean values, these averages
being calculated over the whole range of control parameters.
It is clear that, in the most critical case of b0=300 �m,

spatial mode oscillations almost follow the mean interface
position oscillations. For the largest b0, the ratio of the oscil-
lations had the smallest value and a negative correlation co-
efficient was found. In one way this confirms that perturba-
tion effects, in this case, have minor influence on pattern
dynamics but the calculated correlation coefficient indicates
that they still favor the presence of morphological asymme-
tries. These results suggest that coupling of the perturbation
to the intrinsic pattern dynamics of this system cannot be
simply related to the properties of its unstable branch, mainly
determined by the value of b0. Therefore a better theoretical
comprehension of this system in the nonlinear regime, in-
cluding its perturbed version, seems to be necessary in order
to capture its complex pattern structure.

B. Spatial modes competition and morphological changes in
the periodic pattern

This section concerns our observations of the competition
among the relevant spatial modes present at different stages
of pattern evolution. Measurements of the Fourier amplitude
for the dominant mode �maximum amplitude mode in the
spectrum�, in both the initial and final stages of pattern his-

TABLE II. Values referent to the oscillation ratio between pat-
tern amplitude �
Ak�� and mean interface position �
�x�� averaged
over all control parameters for each b0 adjusted and the correspon-
dent correlation coefficients.

Distance b0 ��m� Correlation Mean oscillation ratio

300 0.90 0.85

400 0.16 0.29

800 −0.30 0.20

FIG. 9. Values of pattern growth rate are plotted against the
control parameter for the three distances used �b0=300 �m ���,
b0=400 �m ���, b0=800 �m ����. Lines are for a guide to the
eye only.

FIG. 10. A Ginzburg-Landau equation models the amplitude of
pattern growth. Its nonlinear term gives its saturation value. The
oscillatory mode present in the amplitude comes from changes in
the pattern morphology due to the perturbation.
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tory, indicate that two different modes may share this prop-
erty. These two dominant modes present a transient exponen-
tial growth in their early stages of evolution. However, for
large time values compared to the characteristic time scale
that defines the transient growth, the amplitude of the initial
dominant mode decreases. Meanwhile, the second mode
evolves and reaches a mean saturation value. Both modes are
consistently described by a Ginzburg-Landau equation �Eq.
�4�� in the transient regime. We checked that the second
mode has a growth rate half of the first one. Figure 11 shows
a typical evolution of these two modes. A switching of the
amplitudes between these two dominant modes is clear and
occurs at t=25 s. From this point, the second mode becomes
dominant. Using an expression similar to Eq. �3�, we calcu-
lated the normalized difference �k of them for each control
parameter and each distance b0 selected. Then, having set the
control parameter, we averaged their values over the whole
set of b0 settings. This procedure revealed a general trend for
this number, which was contrasted with the average values of
the aspect ratio 	 obtained from Sec. III, here averaged over
the set of b0 values. This way it was possible to confront
morphological changes in the pattern with the emergence of
competition modes, as the control parameter is varied. In
order to display the trend of these data we fit them to two
functions as follows. The set of �kmean values was adjusted
using

a + b exp�− c�� + d�1.5, �7�

and the set of 	mean values was adjusted by

a + b exp�c�� − d�� . �8�

We show in Fig. 12 the set of measured data and the adjusted
curves corresponding to these equations. This picture shows
the existence of two distinct regions with clear qualitative
differences. For low values of the control parameter, in the
region assigned as I, the value of �kmean roughly decreases

as the control parameter increases. Values of 	mean are posi-
tive for almost all the values of the control parameter. Con-
cerning pattern selection effects, this region has a subregion,
close to the bifurcation, where wave vector values show
great dispersion. This is followed by an interval �0.04,0.13�
of the control parameter revealing a strong pattern selection
with almost no difference between the initial and final wave
vector. Simultaneously, a qualitative change in the aspect ra-
tio is observed, with a significant dispersion in its values.
When the control parameter is high �region II�, the disper-
sion in the wave vector values increases monotonically. Thus
it seems that not only does the sign crossover in the aspect
ratio coincide with the interval of strong pattern selection,
but also processes having large values of �kmean may present
quite different asymmetrical forms.

Statistical dispersion of the data displayed in Fig. 12 is
shown in Table III. This table also contains values of the
Pearson correlation coefficient between the set of �kmean and
	mean data calculated for each region. We found that the ob-
tained values for this coefficient have opposite signs. Values
inside the parentheses were calculated using curve fitting

TABLE III. Statistical values comparing morphology of the in-
terfacial front and pattern selection. �kmean is the average of the
normalized wave vector difference for a specific region and ��kmean
is its correspondent standard deviation. 	mean is the average aspect
ratio for a specific region and �	mean

is the standard deviation for
this measurement.

Quantity Region I Region II

�kmean 0.04�0.02� 0.06 �0.07�
��kmean

0.13�0.06� 0.05 �0.05�
	mean 0.03�0.04� −0.09 �−0.14�
�	mean

0.08�0.03� 0.08 �0.05�
Correlation coefficient 0.67�0.80� −0.20 �−0.94�

FIG. 11. Time evolution of the dominant modes �k
=0.500 mm−1 ��� and k=0.575 mm−1 ���� for b0=300 �m and
�=0.21. Lines are for a guide to the eye only.

FIG. 12. Mean aspect ratio ��� and mean wave vector differ-
ence ��� of the selected patterns for the three sets of experiments
realized.
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data from Eqs. �7� and �8�. They confirm the general trend
displayed by the experimental data and, in particular, reveal a
marked change in the correlation coefficient. It becomes ap-
parent that statistical properties of pattern morphology and
pattern selection processes may be closely related. So far no
theoretical model describing this system under such strong
nonequilibrium conditions has been developed. Thus, our
measurements can only provide a descriptive scenario.

V. CONCLUSION

We report results of an experimental study on pattern for-
mation in a one-dimensional interfacial front. This pattern
was subject to a deterministic perturbation due to an eccen-
tricity in the cylinder used. The ensuing effects of this con-
trolled perturbation generated a precursor mode in this sys-

tem. We studied the association between this perturbation in
the postbifurcation branch and the periodic spatial modes
developed there. Studies made on the morphology of these
patterns suggest that the instability induced by the eccentric-
ity affects the complex time-dependent dynamics of the pat-
terns formed. Therefore our results call for a modified am-
plitude equation for predicting the evolution of spatial modes
of the pattern in the perturbed case. From this study, it be-
comes evident that statistical tools are valuable in the analy-
sis of the interaction between morphology and dynamics of
patterns found in this complex system.
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